Safety Assessment of Sublingual Vaccine Using Poly(I:C) Adjuvant: Comparison with Nasal Vaccine in Cynomolgus Macaques and Mouse

Tetsuro Yamamoto^{1,2,3}, Fusako Mitsunaga^{4,5}, Kunihiko Wasaki^{1,2,3}, Atsushi Kotani^{1,3}, Kazuki Tajima^{1,3}, and Shin Nakamura^{4,5}

Innovation Research Center, EPS Holdings, Inc.
Intelligence & Technology Lab, Inc.

2 EP Mediate Co., LTD5 Biomedical Institute, NPO Primate Agora

3 Research Center, EPS Innovative Medicine Co., Ltd.

Introduction

We reported a sublingual vaccine formulation with Poly (I:C) adjuvant and influenza HA antigens induced mucosal and systemic immunological responses, resulting in antigen-specific antibodies in saliva, nasal washes and blood. It elicits a balanced state in immune response.

Poly(I:C) is a double-stranded (ds) RNA adjuvant that activates TLR3-mediated immune responses, but it remains unapproved due to its proinflammatory side effects. However, the safety of Poly(I:C) adjuvant for sublingual vaccine is still

Regulated Gene Expression Enhancing Immune Response	Regulated Gene Expression Suppressing Immune Response
<u>Upregulated:</u> CCL7, CCL2, CXCR4, PFKFB3, JUN, KLHL2, PTX3, FADD, ETV6	<u>Upregulated:</u> <i>TNFRSF12A, RGS1,</i> <i>SLA, EDN1</i>
<u>Downregulated:</u> ITGB5, RGS10, PGLYRP1	Downregulated: AQP1, AQP3, GP9, GP1BB, WIPI1, EPAS1, HSPA1B

A Balance State in Immune Response

Methods

Table Gene Information

Symbol	Product; Description; Function
Saa3	Serum amyloid A 3; acute response protein
Tnf	Tumor necrosis factor; inflammatory cytokine
IL6	interleukin 6; immune-inflammatory response
IL1b	interleukin 1 beta; inflammatory cytokine
Ccl2	C-C motif chemokine ligand 2(MCP1); chemokine
Timp1	Tissue inhibitor of metalloproteinase 1; tissue repairing protein
C2	Complement component 2; opsonic function; phagocytic cell activation
lfi47	interferon gamma inducible protein 47; pathogen defense protein
Aif1	Allograft inflammatory factor 1; microglial marker
Отр	Olfactory marker protein; odor detection/signal transduction
Nos2	Nitric oxide synthase 2, inducible, iNos
Gzmb	Granzyme-B; NK cell protease; apoptosis induction

unknown.

In the current study, we directly compared the safety of the Poly(I:C) adjuvanted vaccines on sublingual and nasal routes in Cynomolgus macaques and mice.

T. Yamamoto, et al.	Vaccines.	2024,	12,	643	

Results

Monkeys; · Biochemical blood tests and complete blood counts were observed minimal differences between control and vaccination.

• The levels of inflammatory cytokines (IFN-alpha, IFN-gamma, and IL-17) in plasma did not increase after the third vaccination.

- The gene expression levels of inflammatory cytokines (IL-12A, IL-12B, IFN-alpha1, IFN-beta1, CD69 and GZMB) did not increase.
- In the olfactory bulb, the intranasal vaccine upregulated inflammatory-related genes after 7 days post-vaccination.

Mice;
Biochemical blood tests exhibited minimal variation in both sublingually and intranasally vaccination.
In the olfactory bulb, the intranasal vaccine upregulated inflammatory-related genes after 7days post-vaccination.

Discussions & Conclusion

We previously reported the sublingual SARS-CoV-2 RBD vaccine with Poly(I:C) or AddaS03 did not increase in the levels of inflammatory cytokines. The vaccine with Poly(I:C) were observed slightly lower than the AddaS03 vaccine in the gene expression levels of inflammatory cytokines. These suggest that the vaccine with Poly(I:C) has a milder effect on immuno-proinflammatory factor than AddaS03.

The sublingual influenza HA vaccine with Poly(I:C) had fewer proinflammatory side effects than those of the nasal vaccine, both in macaques and mice. On nasal administration, the side effects of the Poly(I:C) adjuvanted vaccine were markedly more significant in mice than in macaques. The side effects of Poly(I:C) adjuvanted vaccine are probably overestimated by the results in mice, because of nasal structure and function.

We are hopeful the sublingual Poly(I:C) adjuvanted vaccine be vaccines of the future.

